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Abstract

"Ore present new, efficient central schemes for multi-dimensional Hamilton-

Jacobi equations. These non-oscillatory, non-staggered schemes are first- and

second-order accurate and are designed to scale well with an increasing dimen-

sion. Efficiency is obtained by carefully choosing the location of the evolution

points and by using a one-dimensional projection step. First- and second-order

accuracy is verified for a variety of multi-dimensional, convex and non-convex

problems.
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1 Introduction

In this work we consider numerical approximations for solutions of multi-dimensional

Hamilton-Jacobi (H J) equations of the form

0¢(e, t)
0t

+ H(2_, ¢, V¢) = 0, :f"E R N, (1.1)

subject to the initial data ¢(:g, t=0) = 00(2).

Hamilton-Jacobi equations are of special interest in a variety of applications, such

as, e.9., optimal control theory, image processing, geometric optics, differential games

and the calculus of variations. When the Hamiltonian does not depend on ¢, solutions

for (1.1) with smooth initial data will typically remain continuous but will develop

discontinuous derivatives in finite time. Such solutions are not unique, and therefore
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a mechanism is required for singling out a "physically relevant solution", the viscosity

solution. For convex Hamiltonians the viscosity solution coincides with the limit solution

obtained by the vanishing viscosity method [11]. Extensions to general Hamiltonians

were introduced by Crandall and Lions in [7], and have been systematically studied

thereafter in a series of works [3, 5, 6, 25].

Hamilton-Jacobi equations are closely related to hyperbolic conservation laws. Yet

while the literature on numerical methods for conservation laws is flourishing, very little

attention is given to numerical methods for HJ equations. This is surprising given

their increasing role in different applications. Crandall and Lions introduced in [8] first-

order numerical approximations to the viscosity solution of a simplified version of (1.1),

with a Hamiltonian that only depends on the derivative of ¢. Discontinuous Galerkin

(DG) methods for HJ equations were introduced in [10, 22]. Multi-dimensional DG

schemes are based on transforming a scalar equation into a weakly hyperbolic system

which is over- or under-determined, hence an additional least-squares step is required

to single out a solution. High-order Godunov-type methods were introduced in Shu

[32, 33], and were based on an Essentially Non-Oscillatory (ENO) reconstruction step

that was evolved in time with a first-order monotone flux. The least dissipative flux, the

Godunov flux, requires solving Riemann problems at cell interfaces. Central schemes

avoid these difficulties by evolving the solution in smooth regions, i.e., by averaging

over discontinuities. Such schemes have been widely studied for conservation laws, the

prototype being the first-order Lax-Priedrichs (LxF) scheme [9]. A one-dimensional

second-order extension is due to Nessyahu and Tadmor [31]. Central schemes do not

require Riemann solvers, which makes them suitable for solving systems of equations

and for multi-dimensional problems. Extensions to two-space dimensions were done in

[2, 14]; high-order central schemes were developed in [4, 23, 24, 28]; semi-discrete schemes

that reduced the numerical dissipation and eliminated the staggering were developed in

[16, 17, 19].

Central schemes have recently been extended to the HJ equations in [30], which

applied the first- and second-order staggered central schemes of [14, 31] to HJ equations

in one and two space dimensions. L: convergence of order one for this scheme was

proved in [29]. In [18], a second-order semi-discrete scheme was presented, following the

techniques for hyperbolic conservation laws [16, 19]. While less dissipative, this scheme

requires the estimation of the local speed of propagation, which is computationally

intensive in particular in multi-dimensional problems. In a later work, [17], the numerical

viscosity was further reduced by computing more precise information about local speed

of propagation.

In this paper we derive non-staggered fully-discrete central schemes for approxi-

mating solutions of (1.1). These methods combine the ideas of [18, 30], with several

additional ingredients. Our scheme is presented as an N-dimensional algorithm which

is designed with special consideration to performance and scaling to higher dimensions.

We develop both first- and second-order accurate schemes. These schemes are based on

a projection step which is one-dimensional regardless of the dimension of the problem.

The methods described in this paper can also be thought of as the first step toward

higher-order schemes, which is the subject of a forthcoming paper.
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This paper is organized as follows: In Section 2 we develop our first and second

order scheme in one dimension. Section 3 is the heart of the paper, where we gen-

eralize these schemes to N dimensions, first introducing a multi-index notation, then

deriving the location of the evolution points, and finally presenting the algorithm. Sec-

tion 4 presents various examples, demonstrating the first- and second-order convergence

of these schemes. We present a sample code implementation of our 2D second-order

algorithm in the appendix.

Acknowledgment: We would like to thank Ian Mitchell for helpful discussions and for

suggesting the averaging strategy that is used to avoid staggering in the schemes. W'c

also thank Volker Elling for helpful comments on early drafts of this paper.

2 The One-Dimensional Scheme

Consider the one dimensional Hamilton-Jacobi (H J) equation

_t + H (¢_) = 0, (2.1)

subject to the initial data O(x, t= 0) = Oo(X). In order to approximate solutions of (2.1)

we introduce a grid in space and time with mesh spacings, Ax and At, respectively.

We denote the grid points by xi = lAx and t n = nAt, and the fixed mesh ratio by

= At/Ax. Let _7 denote the approximate value of ¢ (xi, t"), and (_)_' denote the

approximate value of the derivative ¢2 (xi, t"). We define (A_)i+½ := _?+1 - _o_.

Given _, an approximate solution at time t _, the approximate solution at the next

time step t "_+1, _,_+1, is obtained as follows:

. Reconstruct a continuous piecewise-polynomial from the data, _, and sample it

at the half-integer points, {x_+1/2}, to obtain the values of _i+½ and its derivative,
n

(_)_. The order of the polynomial is related to the overall order of accuracy of
the method.

.
n An+ 1

Evolve _+½ by solving (2.1) from time t _ to time t _+l, obtaining _,,+½. This

evolution is done at the half-integer grid points where the reconstruction is smooth,

so long as the CFL condition )_ IH' (c2_)1 < 1/2 is satisfied.

An+l
3. Project _,+½ back onto the integer grid points {xi} to get _,+1.

2.1 A First Order Method

The derivation of the first-order method starts by reconstructing a piecewise-linear in-

terpolant of the form

(x, t") := + /xz (2.2)
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where Xi+½ (x) is the characteristic function of the interval [Xi, Xi+l). The values of the

interpolant (2.2) and its derivative at the half-integer grid points, xi+ ½ are

f_ n

n Ft 1 gt

w,±½= _ ± _ (_),±_, (_)'±_ - _x

Integrating (2.1) in time from t" to t _+1 at xi+ ½ gives

Finally, we project the evolved solution back onto the original grid points. For a first-
n+l

order method it is sufficient to average _,±1/2,

2

_ 1 \(A_)i+½ -(A_):_½/( ) H +H

_n-t- 1
The intermediate values _,+1/2 are the same as those computed in the first-order

method in [31],so in one dimension we only add the projection step. This eliminates the

grid staggering in [31] with little computational cost since no additional flux evaluations

are required.

2.2 A Second Order Method

The second-order scheme is based on a piecewise-quadratic interpolant of the form

[ " 1 Z) (A_)i+½ ](A_2),+½ (x - xi) + (x - xi)(x ) Xi+½.(2.4)_(x, t_) := . _7 + Az 2 (Ax) _ - xi+,

Here, 7:) is a limiter whose goal is to prevent oscillations while maintaining the order of

accuracy of the method. There are various possibilities for choosing such limiters (see

[37]). One such example is the Min-Mod limiter,

Z)f, := MM O(f,+t - f_),-_(f_+_ - f___),O(fi+_ - f_) , 1 <_ 0 <_ 2,

where the Min-Mod function is defined as

{ minj{xj}, if allxj >0,
MM (Xl,Xz...) := maxj {xj}, if all xj < O,

0, otherwise.

Since the solution of the HJ equations generally has a discontinuous first-derivative, we

follow [18] by limiting the second-derivative. With the Min-Mod limiter, the second

derivative is approximated by I)(A_)'_+I/2/(Ax)2, where

[ (( _ _ ) 1(( _ )__ )v(_),+½ MM 0 z_),+__-(z_),+½ ,_ A_),+_-(A_

(( o ):_)]0 A_),+½-(A_ ½ .
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Sampling (2.4) and its derivative at the half-integer grid points gives

n

n . 1 ,_ 1T) (Ap)_±½,p_±½= p, + _ (/x_),+_ - 8 (_)_z i+ = /kX

We integrate (2.1) from time t" to time t _+1 using the second-order midpoint quadra-

ture

H (p. (xii½,t_)) dt _ AtH \,P.4±½ ] •

The required mid-values, p. (xi±½, t"+½), can be predicted using a Taylor expansion,

1

( p)_±½ _ ( _),±½ D(AP)i±½Ax AH' Ax Ax '

which leads to

_.+i . ((zx_)7±½
i+½ -': Pi+½ -- AtH \ Ax _AH, ((AP)]±½) D (AP)i"± ½ )\ Ax Ax "

(2.5)

Finally, we project (2.5) back onto the integer grid points using a quadratic interpolant

p_+l n+l (AP)n+l (Xi__ Xi_½) _t_ __ -- == _-½+ Az 2 (Az) 2

_,_+1 1 1
= _i-½ "4- _ (A_0) n+l 8_) (/_q0)_ +1 ,

where (Ap)_ +1 ^-+t .n+l and= v,+½ - v,_ I'

1v(a_)7 +_ = MM 0 ((a_),';+_-(A_);'+'), _ ((a_),++_1- (ap)7:,'),

o +'- ].

Remark. We would like to note that even in the 1D scheme, there are several differences

between our method and the second-order scheme in [30]. A second-order interpolant is

used to re-project the evolved fields back onto the original grid points, resulting with a

non-staggered grid compared with the staggered scheme in [30]. Also, we follow [18] by

applying the nonlinear slope limiters to the second derivative.
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3 Generalization to N Dimensions

We are concerned with approximating solutions of the N-dimensional HJ equation of

the form

Ct + H(V¢) = 0, _ E I_ N, (3.1)

subject to the initial data 0(2 _, t) = ¢0(:g)-

In Section 3.1 we introduce a multi-index notation, which allows a presentation

that nicely parallels the one-dimensional case. We then compute the optimal location

of the evolution points. Sections 3.2 and 3.3 develop the first- and second-order N-

dimensional schemes. The first-order method in §3.2 below applies as is to the case

where the Hamiltonian H depends also on :g and ¢. We extend the second-order method

of §3.3 to this more general case in a remark.

3.1 Preliminaries

A multi-index notation. We define the multi-index c_ = (c_1, c_2,. • •, O_N), and denote

by x_, the point x_ (x(l_ _(2) _(N)'_ ]t_N" x(k)= , _2,. • •, x_ ) E Here denotes the k-th coordinate

of x so x_k ) = o_kAx(k). For example, in the conventional three-dimensional notation

with indices i, j and k and components (x, y, z), c_ = (i, j, k) and x_ = (xi, yj, zk).

For a given c_ we define the special multi-indices c_ + ek := (c_1,..., c_k =t=1,..., C_N),
, (1) (2) _(N)

which denotes an increment in the k direction. Then q0_ = _x_l, x_,..., x_ N ; t") and

,- - , ,...,-_s, tn) • Finally, we denote the evolution points

with the multi-indices + := (c_1 + a, a2 + a,..., C_N + a), for some constant a, so that

_9_ : _(X_I? -4- aAx (1) , xa2-(2)-4- aAx (2) , • • •, XaN--(N)-4- aAx(N)'tn).,

The location of the evolution points. We would like to determine the optimal

location of the evolution points. For simplicity we assume a grid point at the origin,

x = (0, 0,..., 0), and scale the coordinates such that Vk, Ax (k) = 1. The two evolution

points will then be located at x± -- (+a, +a,..., +a) for a constant a that is yet to be
determined.

Consider the evolution point x+, which is at a distance v/Na from the origin. The

value of _ at this point will be based on a polynomial that is constructed inside the

(hyper-) volume bounded by the coordinate planes and the (hyper-) plane _--]N=_x( 0 = 1.

There will be discontinuities in the first-derivative of the piecewise-polynomial inter-

polant _(x, t _) along the sides of this hyper-volume. Since we evolve the solution in

smooth regions, an optimal choice of the evolution points is at an equidistant location

from these boundaries. The diagonal line (s, s,..., s) (for some parameter s) intersects

EN= 1 1 1)the (hyper-)plane ix (i) = 1 at s = I/N, or at the point xp = (N, N''''' which

is at a distance 1/v/-N from the origin (see Figure 3.1).
The optimal choice is to require that the evolution points are equidistant from the

coordinate planes and the intersection point xp. The distance from x+ to all the coordi-
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nate planes is a. The distance from x+ to xp is 1/x/_- av/-N, therefore the requirement

that x+ be equidistant from the coordinate planes and xp is

1
a-

N+v_V

The evolution points in [30] were chosen as a = 1/4, which places them equidistant

between the origin and the intersection point xp. In N dimensions this choice generalizes

to a = (2N) -1. In our case, when N = 2, a = (2 + v_) -1 ,-_ 0.29 which is about 15%

larger than the choice a = 1/4. When N = 3, a = (3 + vf3) -1 ,_ 0.21 which is about

30% larger than the choice a = 1/6. Thus the optimal choice of a will allow larger mesh

ratios, leading to larger time steps and less dissipation.

X a

Figure 3.1: The location of the evolution points x+ and xp in 2D.

3.2 A First Order Method

For simplicity we assume that the spacing is identical in every direction, i.e., Ax (k) ----Ax,

for all k. Generalization of the methods below to the case where Ax (k) _ Ax(J) for

k _ j is straightforward. We define the forward- and backward-differences in the k-th
n n n -- _ n

component as A k _ := _o+ek - _ and A k _o := _ - __e_, respectively. At each grid

point x_ we reconstruct two linear interpolants that are valid in the two hyper-quadrants

that contain the points x+ = x_ ± (a,...,a)Ax,

N 4- n

_± (x, t _) := _: + E Ak _v_ (x(k) _ x_)) ' (3.2)
Ax

k=l

In order to compute the solution at the next time step at x_, we first compute the

solution at time t _+1 at the evolution points x_, and then average these two values. The

value of the linear interpolant (3.2) at x+ is

N

n _ 4- n_(x4-, t_) = _ + a A k _o,
k=l
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and its derivative is

:= ± n
\-_z'" ax ]

Hence, the values at the evolution points x+ at the next time step, t n+l, are given by

tn+l

_o(x+,t_+l) = oQ(x=L,t_) -- St _ H (V_o(x+,t_))dt _ _o(x+,ta) - AtH ((V_o)_) =

-_: +a_-'_A ± ,,_-- k_,, AtY \---_x ", _ ]
k=l

The value at t _+I at x_ is finally obtained by averaging _+I := _ (x±, t '_+1) (compare

with (2.3)),

_o<_+1 = 1 (_++I + _+l) = (3.3)
2

a - r_

= G + _ a G - zxk_ -
k=l /

2 k, _ '''" _ ]+H\ _ ,..., _ ] .

3.3 A Second Order Method

For simplicity we assume again that the mesh spacing is identical in every spatial di-

rection, i.e., Ax (k) = Ax, for all k. Similarly to the 1D case in Section 2.2, the N-

dimensional second-order method is based on a piecewise-quadratic polynomial. For

every grid node we reconstruct two N-dimensional quadratic interpolants: _+ (x, t n)

for the hyper-quadrant along the positive diagonal, and __ (x, t _) along the negative

diagonal (see Figure 3.1),

N 4- n

_± (x,t _) := _,_ + _ Ak (Po (x(k) _ x_))+ (3.4)
ax

k=l

1
£ 7PkA_°: (x(k)_ x(k))(x (k)+2 k=l (_xz)2 -_±_)_'(k)+
N1

j=l k=l
k#j

A ±The Min-Mod limiter in the j-th direction acting on k qo<_is

+ n [Of A+ n Ak_oo)/)_A k_ = MM - ± "
t k _+ej

a -o-
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4- Bso that T)jA k _o_/(Ax) 2 approximates the second derivative 02_o (xo, t n)/Ox(J)Ox (k) .

Nowx_ )-x_ )=+aAx,x_ )-x (k) --(a-1)Axandx_ )-x (k) =-(a--1) Ax
ot+e k -- a--ek

so evaluating (3.4) at x_:

:= _o±(z±, t n) =
N

n _ 4- n= _ + a A k _ +

k=l

(a N a2 N Na -1) E + _ DjA kq0_.

k=l j=l k=l
k#j

The approximation to the first derivative of (3.4) in the p-th direction is given by

._ -- - -x,_4-ep)j +OzO,) zXx + 2 (Az) 2
N

+ 2( x)2 + )- ,
k=l

kCp

which when evaluated at x+ is

( Oqo )"_4-'- &24-(x,t_) +_OxO,)

N 4- n 4- n
4- " a DpA k ¢p_ + DkAp _o_

A+ -" 2a- 17),A, _o 4- E-- P _ 4- AxAx 2 Ax -2 _=,
k#p

The approximation to the second derivative is given by

DpAq _ + 7:)qAp _

\&(q-TbT_)] = 9(A_) 2

The solution at the next time step at the evolution points _+l is obtained by

evolving the reconstruction (3.4) according to (3.1). The integral of the Hamiltonian

is approximated by a second-order midpoint quadrature, ftt,,q+_H (V_o (x_+, t'_))dt

At" --((Vqo)_:+½), which at the evolution points gives

_gl = _o_: - AtH Vqo _ . (3.5)

Here (Vp)_: := \_o_m14-,...,_a_uv)J4-] denotes the approximation to the gradient at

x±. The mid-values in time can be estimated via the Taylor expansion using (3.1),

Op Op
At a_qa O (At 2) (3.6)( t"+½) - (z±, tn) + (z4-,t") + =Ox(_) x±, Ox(_) 20x(_)cOt

- OxO') (x±,t") - _= _c3-----w_'H (V_o (x±, t")) cOxO,)Ox(k ) (x+,t n) + 0
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Hence,

%
/./" !

Xi-lj-i

I .'"

X_j

Xi+Ij_

Figure 3.2: The location of the points x+, x_, x(-1)+ and x(+1)- used in the projection

step along with the distances Do, D+ and D_ in the two dimensional case.

All that remains is to project (3.5) back onto the original grid points, x_. This

projection is one-dimensional regardless of N. We use the four evolution points x+, x_,

J:(-1)+
\

(X (') + AX(')- aAx('),x_ ) + Ax (2> -aAx(2),...,x(N)+ Ax (N) --aAx (N)) (seeX(+l)-

Figure 3.2). The distances between the evolution points are Do := Ix+- x_[ --
\

2av/NAx, D+ := ix(+,)_ - x+[ = (1 - 2a)v_Ax, and D_ := [x(-1)+ - x_[ = D+.

We then define the approximations to the first derivative along the diagonal,

(d_)o +' := _-+' - _,,+' (d_)_ +' :- _(+,_--"+1_ _o_+'
Do Do ' D+ D+

, v;+'-
D_ D_



CENTRAL SCHEMES FOR HJ EQUATIONS 11

The approximation to the second derivative is the limited difference 7) (dq_)o +1/D2,

where D2 = ½ (Do + D+), and

D+ Do '2 D+ -- , (3.7)

0 ( (d_)°+l (d_)_-+l

The approximated value at the next time step t n+l at the grid point x_, is therefore

given by

7) (d_)_ +1_2+1 = _._+,+ (a_)o+1(xo- x_) + (zo- __1(_o- _+)
Do 2D2

__+' - _t +1 Do 7) (d_)o +' 902

Do 2 2D2 4

---- I (_+I _[__n_+,) __ D______7)(d_)o+i
2 8D2 '

where _+1 is given by (3.5) and 7)(d_)o +1 is given by (3.8).

Remarks.

1. If the Hamiltonian H depends also on i and ¢, then (3.5) becomes

_:+I = _± _ AtH Z, _+ , (V_ ,

where

n+½ n At
_± = _o± - H (i', ___ (V_)_)

2 ' '

and the Taylor expansion (3.6) contains the additional term

At [ O H 0 H 0_ ]2 _ (x'_'V_)+0_ (x'_'V_)0--_
(X:l:,t n)

2. We would like to stress that the fully-discrete scheme in [18] that was derived as an

intermediate step in developing the semi-discrete scheme, was only first-order in

time. Moreover, in 2D our scheme is based only on two flux evaluations compared

with four flux evaluations in [17, 18]. It also does not require any estimation of

the local speed of propagation at every grid point (as required in [17, 18]) at the

price of being more dissipative.

We would like to summarize the second-order N-dimensional algorithm for a general

Hamiltonian H(i-, ¢, V0) "
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Algorithm 3.1 Let the distance of the evolution points from the origin be a -

1. For each grid node x_ and each k compute

Jr _ n 12 -- 77t n n

Ak ¢P_, = _P_+e_ -- _G, and A_: _p_ = (p,_ -- _-ek"

2. For each grid node xo and for each j and k compute

DjAk_o<_ = MM 0 + _ + _ 1 /A + ,, Ak__ej) '
L " "

0 (A,%2 A± __ _l- _vo-ej)].

3. For each grid node xo compute

N

4-"_: = _v] + a A k _ +
k=l

a(a-1) N a2 N N

2 E"'A+ '_ 4- n
k=l j=l a=l

t¢#j

and for each p compute

_ pSu_ 4"
t,o--UT) + a_

• N 4- n 4- .
4- " a 79pA k (p_ + 79kAp 9o<,

2a- 1 79pAp_,_ + E
2 Am 2 Am

k=l

k_p

-+½
( 0_o )" At[ (9 H (_, " (V_o)",)+

+_n (e,_7:,(v_)7:)((9__"ko-_)4- +
4- n 79 4- n-

N 0 H (e, " (V_o):_) [79pAa qo_ -4- kA1, _0<_

"_± = _+ - AtH Vp ,

where H(( _o)+) = H o=m)+,...,to:(N),_t_ •

4. Let Do = 2av/-NAx, D+ = D_ = (1 - 2a) v/-NAx. For each x_ compute

(d_o)o+1 _.+i __ _02+I (d(io)_ -l-I _n-l-I _n4-1_,+ _ _(_+1)- - _o+ (d(P)L +1

Do Do ' D+ D+ ' D_

_.4-1 _n+l
a+ -- _(_-1)+

D_
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4

(where a + 1 is the multi-index (al + 1,..., aN :I:1) )

D (d_)o+l = MM [0 ( (d_v)_+lD+ (&P)°+l)Do '21( (d_°)_+lD+

Numerical Examples

We demonstrate the schemes developed in Section 2 and Section 3 with several examples.

Most of these examples are standard test cases that can be found, e.g., in [18, 30, 33].

Example 1: A convex Hamiltonian

We start by testing the performance of our schemes on a convex Hamiltonian. We

approximate solutions of the one-dimensional equation

1

Ct + _ (¢x + 1)2=0, (4.1)

subject to the initial data ¢(x, 0) = -cos(_rx) and to periodic boundary conditions on

[0, 2]. The change of variables, u (x, t) = Cx (x, t) + 1, transforms the equation into the

1 (u2)_ = 0, which can be solved via the method of characteristicsBurger's equation, ut +

[33]. As is well known, Burger's equation generally develops discontinuous solutions even

with smooth initial data, and hence we expect the solutions of (4.1) to have discontinuous

derivatives. In our case, the solution develops a singularity at time t = 7r-2.

The results of our simulations are shown in Figure 4.1 and Figure 4.2. The order

of accuracy of these methods is determined from the Ll-norm of the error (see [29]).

The results before the singularity, at T = 0.8/7r 2, are given in Table 4.1, and after the

singularity at T = 1.5/rr 2 in Table 4.2.

In 2D we solve a similar problem

1

Ct + _ (¢_ + _ + 1) 2 = 0, (4.2)

which can be reduced to a one-dimensional problem via the coordinate transformation

(_)r_ = _1( 11 -11 ) (x)" The results °f the sec°nd-°rder calculati°ns f°rthey

initial data ¢ (x, y, 0) = - cos (rr(z + y)/2) = - cos (rr{) are shown in Figures 4.3-4.4.

The convergence rates for the first- and second-order 2D schemes before and after the

development of the singularity are shown in Tables 4.3-4.4.
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First-order method

N Ll-error

40 0.0342

80 0.0172

160 0.0082

320 0.0040

L 1-order

1.00

1.06

1.03

Second-order method

L 1-error

6.14x10 -3

1.53 x 10 -3

3.62 x 10 -4

8.77x10 -s

L 1-order

2.00

2.08

2.04

Table 4.1: Ll-errors for the ID convex HJ problem (4.1) before the singularity formation.

T = 0.8/_ n.

N

40

80

160

320

Table 4.2: Ll-errors for

T = 1.5/_T 2.

First-order method

L 1-error L l -order

Second-order method

L 1-error L 1-order

0.0788 - 0.0110 -

0.0379 1.06 2.70 × 10 -3 2.03

0.0183 1.05 6.79x10 -4 1.99

1.00 2.28x10 -50.0091 1.57

the 1D convex HJ problem (4.1) after the formation of the singularity.

N

50

100

200

First-order method

Ll-error Ll-order

0.299819

0.144967 1.05

0.0712024 1.03

Second-order method

Ll-error Ll-order

0.0261816

0.0061162 2.10

0.00146501 2.06

Table 4.3: Ll-errorsfor the 2D convex HJ problem (4.2) before the singularity formation.

T = 0.8/_ 2.

N

50

100

200

Table 4.4: Ll-errorsfor

T = 1.5/_ 2.

First-order method

L 1-error L 1-Order

0.44437

0.215055 1.05

0.104421 1.02

Second-order method

L_-error Ll-order

0.0356362

0.0101615 1.81

0.00237225 2.10

the 2D convex HJ problem (4.2) after the singularity formation.
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We proceed with a 3D generalization of (4.2),

1

¢, + _ (0x + 0y + 0_ + 1) 2 -- 0, (4.3)

subject to the initial data ¢ (x, y, 0) -- - cos (Tr(x + y + z)/3). The convergence results

for the first- and second-order 3D schemes before and after the singularity formation

are given in Tables 4.5-4.6.

Table 4.5:

T = 0.08.

N

50

100

200

First-order method

L l-error L l -order

5.932

2.838 1.06

1.76 0.69

Second-order method

L 1-error L 1-order

0.672

0.155 2.12

0.041 1.92

L1-errors for the 3D convex HJ problem (4.3) before the singularity formation.

Table 4.6:

T = 0.152.

First-order method

N Ll-error Ll-order

50 8.801 -

100 4.148 1.09

200 2.138 0.96

Second-order method

L 1-error L 1-order

0.776

0.171 2.18

0.055 1.65

LY-errors for the 3D convex HJ problem (4.3) after the singularity formation.

Example 2: A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations. In 1D we solve

¢, - cos (¢x + 1) = 0, (4.4)

subject to the initial data, ¢ (x, 0) = -cos (7rx), and periodic boundary conditions

on [0,2]. In this case, (4.4), has a smooth solution for t _ 1.049/7r 2, after which a

singularity forms. A second singularity forms at t _ 1.29/_ 2. The results are shown in

Figures 4.5-4.6. The convergence results before and after the singularity formation axe

given in Tables 4.7-4.8.
In 2D we solve

¢, - cos(¢_ + Cy + 1) = 0, (4.5)

subject to the initial data, ¢ (x, y, 0) = - cos (_(x + y)/2), and periodic boundary con-

ditions. The results are shown in Figures 4.7-4.8. The convergence results for the first-
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N

4O

80

160

320

Table 4.7: Ll-errors for

T = 0.8/¢r 2.

First-order method

L l-error

Second-order method

L _-order Ll-error L 1-order

0.0406 7.71 × 10 -3 -

0.0206 0.99 2.00 X 10 -3 1.95

0.0099 1.06 4.75 × 10 -4 2.07

0.0048 1.03 1.16 × 10 -4 2.04

the ID non-convex HJ problem (4.4) before the singularity formation.

N

40

1800
32O

First-order method

L 1-error

Second-order method

L _-order L _-error L 1-order

O. 1057 - 0.0248 -

0.0515 1.04 6.92×10 -3 1.84

1.05

1.04

0.0248 1.89 × 10 -3

4.96x10 -40.0121

1.87

1.93

Table 4.8: LLerrors for the 1D non-convex HJ problem (4.4) after the singularity formation.

T = 1.5/_ _.

N

50

100

200

FU_t-ordermethod

Ll-error LX-order

0.4046612

0.195242 1.05

0.0958819 1.03

Second-order method

L_-error L_-order

0.0402387

0,00999105 2.01

0.0024644 2.02

Table 4.9: LLerrorsforthe2D non-convex HJ problem (4.5)beforethesingularityformation.

T = 0.8/_ 2.

N

50

100

200

First-order method

Ll-error Ll-order

0.705644

0.334981 1.07

0.161502 1.05

Second-order method

Ll-error Ll-order

0.0837231 -

0.0215121 1.96

0.00555327 1.95

Table 4.10: LX-errorsforthe 2D non-convex HJ problem (4.5)afterthesingularityformation.

T = 1.5/_ 2.
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and second-order 2D schemes before and after the singularity formation are given in

Tables 4.9-4.10 and confirm the expected order of accuracy of our methods.

The extension of (4.5) to 3D reads

Ct - cos (O, + 09 + a: + 1) = o, (4.6)

The initial data is taken as 0 (x, y, 0) = - cos (zr(x + y + z)/3) . The convergence rates

for the first- and second-order 3D schemes are given in Tables 4.11-4.12.

N

50

100

200

First-order method

L I-error L1-order

5.071 -

2.55 0.99

1.142 1.16

Second-order method

L l -error L 1-order

0.603

0.150 2.01

0.035 2.10

Table 4.11: Lt-errors for the 3D non-convex HJ problem (4.6) before the singularity forma-
tion. T = 0.08.

N

200

First-order method

L l-error L l-order

8.594

4.26 1.01

1.913 1.16

Second-order method

L 1-error L 1-order

1.100

0.299 1.88

0.075 1.99

Table 4.12: L1-errors for the 3D non-convex HJ problem (4.6) after the singularity formation.
T = 0.152.

Example 3: A linear advection equation

In this example we solve the 1D linear advection equation, i.e., the Hamiltonian is taken

as H (¢_) -- ¢_. We assume periodic boundary conditions on [-1, 1], and take the initial

data as ¢ (x, 0) = g (x - 0.5) on [-1, 1], where

g(x) = - -5- + _ + (x + 1)+ h(_),

2cos(_)- _, -1 < • < -_,
1 <x<O,3 + 3 cos (2zrx), -5

h(x) = _5_ 3cos(2_x), 0 < • < 1,
(28+4zr+cos(3zrx))-3-_3cos(2x), 5 <x< 1.

This example was designed as to be similar to the one used in [12]. An error in that

reference prevents us from repeating it exactly. The results of the second-order method

are shown in Figure 4.9. The dissipation effects are visible in the round-off of the corners.
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Example 4: 2D eikonal equation in geometric optics

We demonstrate the results obtained with the 2D scheme on the non-convex problem

¢t+V/_ 2+¢_+1=0,¢ (z, _, 0) = ¼(cos(2,x) - 1) (cos(2_y) -- 1) - 1.
(4.7)

This model arises in geometric optics [15]. The results of our second-order method at

time T = 0.6 are shown in Figure 4.10, where we see the sharp corners that develop in

this problem, in agreement with the results in [30].

Example 5: Optimal control

We solve a 2D problem with a more general Hamiltonian of the form H(x, y, VO). This

is an optimal control problem related to cost determination [33].

' sin2(y) - 1+ cos(x) = 0,
Ct -- sin (y) Cx + sin (x) _ + levi - _ (4.8)
¢(z,y,O)=O.

This example develops a complex singularity structure. The result of our second-

order scheme is in qualitative agreement with [30] as can be seen in Figure 4.11.

I I I'50 o12 0, 01_ 015 , ,_ ,i, ,i_ ,:,

Figure 4.1: Example i. The 1D convex Hamiltonian (4.1) before the formation of singu-

larities. T = 0.8/_r 2. N = 100. Shown are the first-order approximation, the second-order

approximation and the exact solution.
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08

0.6

0.4

0.2

0

-02

-0.4

-0.6

-0.8

-1

-1.2

, _ i i i , i i i

I o o 2°d-o,_=,._.o_ / d

o2 o'., o'.6 o'.6 ; ;.2 ,i, ,'.6 ,'.6

Figure 4.2: Example 1. The 1D convex Hamiltonian (4.1) after the formation of singular-

ities. T = 1.5/7r 2. N = 100. Shown are the first-order approximation, the second-order

approximation and the exact solution.

1

0.5 " i

0 : :. i

"0" I

o_
• -0.5

1.5 1
-2 2

Figure 4.3: Example 1. The 2D convex Hamiltonian (4.2) before the formation of singular-

ities. 7' = 0.8/7r 2. N = 40 x 40.
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0.5

0

-0,5

-1

-,
1 1 0.5 0 -0.5

1.5
-2 2

Figure 4.4: Example 1. The 2D convex Hamiltonian (4.2) after the formation of singularities.
T=l.5/_ 2. N=40x40.

1.5

I

0.5

(

-0.5

-I
0

+ + 1st-order method
0 0 2ncl-oKler method

exact

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 4.5: Example 2. The ID non-convex Hamiltonian (4.4) before the formation of

singularities. T = 0.8/7r 2. N = 100. Shown are the first-order approximation, the second-

order approximation and the exact solution.
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1.5

0,5

t i i _ , , i , ,

+ _" 1st-order method
0 0 2nd-order method

exacl

0 0 2 0.4 0 6 0 8 1 ! .2 1.4 1.6 1.8 2

Figure 4.6: Example 2. The ID non-convex Hamiltonian (4.4) after the formation of

singularities. T = 1.5/7r 2. N = 100. Shown are the first-order approximation, the second-

order approximation and the exact solution.

1.5.

1

0.5

O,

-O.S

-1

1

" ' " 1 -1.5 -2

1.5
-2 2

Figure 4.7: Example 2. The 2D non-convex Hamiltonian (4.2) before the formation of

singularities. T = 0.8/Ir 2. N = 40 x 40.



22 S. BRYSON AND D. LEVY

1.5_

1.

0.5,

O,

-0.5 ,

-1

2

1,5
-2 2

Figure 4.8: Example 2. The 2D non-convex Hamiltonian (4.2) after the formation of

singularities. T = 1.5/Ir 2. N = 40 x 40.

t=2 t=4
0 0

0

t=8 t=l 6

0

-3 -3

-4 -4

-5 -5

-6 -6
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 4.9: Example 3. A ID linear advection problem. N = 400.
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O, -1.35 -

: •

-0.2 . -1.4 _ : : : -

.o., -145 _ .

-0.6 : -1.5 : .

-0.8

-1.55,

0.8 : 0.8

0 0.6_0

0.400.4_5 0"40.__.5

0 1 0 1

Figure 4.10: Example 4. The 2D eikonal equation (4.7). N = 40 x 40. Left: the initial

data. Right: the solution at T = 0.6.

0.

.4
\\ .__._.-.--.--"_-_ -2

-1

1

-4 4

Figure 4.11: Example 5. The 2D optimal control problem (4.8). T = 1. N = 40 x 40.
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Appendix A: A Second-Order 2D MATLAB Imple-

mentation

We present an example of a MATLAB implementation of Algorithm 3.1 in 2D. The

following code provides the core computations for a single time step, but does not include

any handling of boundary conditions. The functions H(phix, phiy), Hphix(phix,

phiy) and Hphiy(phix, phiy) return, respectively, the Hamiltonian H (_, _) and

the derivatives of the Hamiltonian 0H(_=.v_) and aH(v_,_) The function minmod is the
0_= 0_y

slope limiter defined in Section 2.2. This code is somewhat optimized for speed at the

expense of storage, and h := Ax, k := At.

al = 1/(2 + sqrt(2));

a2 = a1*(a1-1)/2;

aS = a1*al/2;

a4 = (2,a1-I)/2;

a5 = al/2;

h2 = h'h;

twoh2 = 2.h2;

koyer2 - k/2;

for i-l:N

for j-I:N _ compute the first differences

dphix(i.j) = phi(i+1.j) - phi(i.j);

dphiy(i.j) - phi(i.j+l) - phi(i.j);

end

end

for i=l:N

im = i-l;

ip = i+l;

for j-I:N _ compute the limited second differences

jm - j-l;

jp = j+l;

dphixx(i.j) = minmod(dphix(ip.j) - dphix(i.J), dphix(ip.j) - dphix(im.j), dphix(i.j) - dphix(im.j));

dphiyx(i.j) = minmod(dphiy(ip.j) - dphiy(i.j), dphiy(ip.j) - dphiy(im.j), dphiy(i.j) - dphiy(im.j));

dphixy(i.j) - minmod(dphix(i.jp) - dphix(i.j), dphix(i.jp) - dphix(i.jm), dphix(i.j) - dphix(i.jm));

dphiyy(i.j) = minmod(dphiy(i.jp) - dphiy(i.j), dphiy(i.jp) - dphiy(i.jm), dphiy(i.j) - dphiy(i.jm));

end

end

for i=l:N

for j-I:N

im - i-I;

jm _ j-i;

dphixyp - dphiyx(i.j) + dphixy(i.j);

dphixym - dphiyx(i.jm) + dphixy(im.j);

phip - phl(i.J) + ala(dphix(i.j) + dphiy(i.j)) ÷ a2*(dphixx(i.j) + dphiyy(i.j)) + a3*dphixyp;
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phim - phi(l,j) - al*(dphix(lm,J) + dphiy(i,jm)) + a2*(dphixx(im,j) + dphiy_(i,Jm)) + a3*dphixym;

phixp = (dphix(i,j) + a4*dphixx(i.j) + aS*dphixyp)/h;

phiyp = (dphiy(i,j) + a4*dphiyy(i,j) + aS*dphixyp)/h;

phixm = (dphix(im.j) - a4*dphixx(im,j) - aS*dphilym)/h;

phiym = (dphiy(i.jm) - a4*dphiyy(i,jm) - aS*dphixym)/h;

phixtp = -Hphix(phixp. phiyp)*dphixx(i,j)/h2 - Hphiy(phixp, phiyp)*dphixyp/twoh2;

phiytp - -Hphix(phixp. phiyp)*dphixyp/zwoh2 - Hphiy(phixp, phiyp)*dphiyy(i,j)/h2;

phixtm = -Hphix(phirm. phiym)*dphixx(im,j)/h2 - Hphiy(phixm, phiym)*dphixym/twoh2;

phiytm - -Hphix(phixm. phiym)*dphixym/twoh2 - Hphiy(phixm, phiym)*dphiyy(i,jm)/h2;

phihatp(i,j) = phip - k*H(phixp + kover2*phixZp, phiyp + kover2*phiytp);

phihatm(i,j) = phim - k*H(phim + kover2*phixtm, phiym + kover2*phiytm);

end

end

Dp - (1-2*al)*h*sqrt(2) ;

Dm =Dp;

D2 " (DO + Dp)/2;

DO2oSD2 = DO*DO/(8*D2) ;

for i=l:N

for j=I:N

ip = i÷l

jp = j+1

im = i-1

jm = j-1

dphiO =

dphip =

end

(phihazp(i,j) - phihatm(i,j))IDO;

(phihazm(ip,jp) - phihatp(i,j))/Dp;

dphim - (phihaZm(i,j) - phihatp(im,jm))/Dm;

d2phi = minmod(dphip - dphiO, dphip - dphim, dphiO - dphim);

phi(i,j) - (phihatp(i,j) + phihatm(i,j))/2 - DO2o8D2*d2phi;

end
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